

Video Solution on Website:-

Video Solution on YouTube:-
https://physicsaholics.com/home/courseDetails/97
https://youtu.be/AlqRysljOXs

Written Solution on Website:-

Q 1. Two particles A and B of same mass and having charges of same magnitude but of opposite nature are thrown in a region of magnetic field (as shown) with speeds V_{1} and $v_{2}\left(v_{1}>v_{2}\right)$. At the time particle A escapes out of the magnetic field, angular momentum of particle B w.r.t. particle A is proportional to (Assume both the particles escape in the region from where they respectively entered the field) \qquad

https://physicsaholics.com/note/notesDetalis/51

(a) $v_{1}+v_{2}$
(b) $v_{1}-v_{2}$
(c) $v_{1}^{2}-v_{2}^{2}$
(d) $v_{1}^{2}+v_{2}^{2}$

Q 2. Trajectories of three particles A,B and C projected perpendicular to a uniform transyerse magnetic field in three different cases are shown in figure. A, B and C can be

(a) ${ }_{1}^{1} \mathrm{H},{ }_{2}^{4} \mathrm{He},{ }_{1}^{2} \mathrm{H}$
(b) ${ }_{1}^{1} \mathrm{H},{ }_{1}^{2} \mathrm{H},{ }_{2}^{4} \mathrm{He}$
(c) ${ }_{1}^{2} \mathrm{H},{ }_{2}^{4} \mathrm{He},{ }_{1}^{1} \mathrm{H}$
(d) ${ }_{2}^{4} \mathrm{He},{ }_{1}^{1} \mathrm{H},{ }_{1}^{2} \mathrm{H}$

Q 3. A particle of mass m and charge q enters a region of magnetic field (as shown) with speed v. There is a region in which the magnetic field is absent, as shown. The particle after entering the region collides elastically with a rigid wall. Time after which the velocity of particle becomes antiparallel to its initial velocity is

(a) $\frac{m}{2 q B}(\pi+4)$
(b) $\frac{m}{q B}(\pi+2)$
(c) $\frac{m}{4 q B}(\pi+2)$
(d) $\frac{m}{4 q B}(2 \pi+3)$

Q 4. A uniform magnetic field $\vec{B}=\mathrm{B}_{0} \hat{\jmath}$ exists in space. A particle of mass m and charge q is projected towards negative x -axis with speed v from a point $(\mathrm{d} 0,0)$. The maximum value of v for which the particle does not hit the $y-z$ plane is:
(a) $\frac{2 B q}{d m}$
(b) $\frac{B q d}{m}$
(c) $\frac{B q}{2 d m}$
(d) $\frac{B q d}{2 m}$

Q 5. Two identical particles having the same mass m and charges $+q$ and $-q$ separated by a distance d enter in uniform magnetic field B directed perpendicular to paper inwards with speeds v_{1} and v_{2} as shown in figure. The particles will not collide if: (Ignore electrostatic force)

(a) $d>\frac{m}{B q}\left(v_{1}+v_{2}\right)$
(b) $d<\frac{m}{B q}\left(v_{1}+v_{2}\right)$
(c) $d<\frac{2 m}{B q}\left(v_{1}+v_{2}\right)$
(d) $\mathrm{v}_{1}=\mathrm{v}_{2}$

Q 6. A charged particle having charge q experience a force $\vec{F}_{1}=q(-\hat{\jmath}+\hat{k}) \mathrm{N}$ in a magnetic field \vec{B} when it has a velocity $\vec{v}_{1}=1 \hat{\imath} \mathrm{~m} / \mathrm{s}$. The force becomes $\vec{F}_{1}=q(\hat{\imath}-$ $\hat{k}) \mathrm{N}$ when the velocity is changed to $\vec{v}_{2}=1 \hat{\jmath} \mathrm{~m} / \mathrm{s}$. The magnetic induction vector at that point is
(a) $(\hat{\imath}+\hat{\jmath}+\hat{k}) T$
(b) $(\hat{\imath}-\hat{\jmath}-\hat{k}) T$
(c) $(-\hat{\imath}-\hat{\jmath}+\hat{k}) T$
(d) $(\hat{\imath}+\hat{\jmath}-\hat{k}) T$

Q 7. A charged particle is projected with velocity v_{0} along positive x -axis. The magnetic field B is directed along negative z -axis between $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{L}$. The particle emerges out (at $\mathrm{x}=\mathrm{L}$) at an angle of 60° with the direction of projection. Find the velocity with which the same particle is projected (at $\mathrm{x}=0$) along positive x -axis so that when it emerges out (at $\mathrm{x}=\mathrm{L}$), the angle made by it is 30° with the direction of projection:
(a) $2 \mathrm{v}_{0}$
(b) $\mathrm{V}_{0} / 2$
(c) $\mathrm{v}_{0} / \sqrt{3}$
(d) $\mathrm{v}_{0} \sqrt{3}$

Q 8. A block of mass m \& charge q is released on a long smooth inclined plane. Magnetic field B is constant, uniform, horizontal and parallel to surface as shown. Find the time from start when block loses contact with the surface -

(a) $\frac{m \cos \theta}{q B}$
(b) $\frac{m \operatorname{cosec} \theta}{q B}$
(c) $\frac{m \cot \theta}{q B}$
(d) none of these

Q 9. Two particles of charges $+Q$ and $-Q$ are projected from the same point with a velocity v in a region of uniform magnetic field B such that the velocity vector makes an angle θ with the magnetic field. Their masses are M and 2 M , respectively. Then, they will meet again for the first time at a point whose distance from the point of projection is-
(a) $2 \pi \mathrm{Mv} \cos \theta / \mathrm{QB}$
(b) $8 \pi \mathrm{Mv} \cos \theta / \mathrm{QB}$
(c) $\pi \mathrm{Mv} \cos \theta / \mathrm{QB}$
(d) $4 \pi \mathrm{Mv} \cos \theta / \mathrm{QB}$

Q 10. A direct current flowing through the winding of a long cylindrical solenoid of radius R produces in it a uniform magnetic field of induction \vec{B}. An electron flies into the solenoid along the radius between its turns (at right angles to the solenoid axis) at a velocity \vec{v} (Figure). After a certain time, the electron deflected by the magnetic field leaves the solenoid. Determine the time t during which the electron moves in the solenoid.

(a) $\frac{m}{e B} \tan ^{-1} \frac{e B R}{m v}$
(b) $\frac{2 m}{e B} \tan ^{-1} \frac{e B R}{m v}$
(c) $\frac{m}{e B} \tan ^{-1} \frac{m v}{e B R}$
(d) $\frac{2 m}{e B} \tan ^{-1} \frac{m v}{e B R}$

Q 11. In a region of space, a uniform magnetic field B exists in the y-direction. A proton is fired from the origin, with its initial velocity v making a small angle α with the y direction in the $y-z$ plane. In the subsequent motion of the proton -

(a) its x-coordinate can never be positive
(b) its x -and z -coordinates cannot both be zero at the same time
(c) its z -coordinate can never be negative
(d) its y-coordinate will be proportional to the square of its time of flight

Q 12. A charged particle is moving with constant speed in a horizontal $x-y$ plane in a straight line as shown. Suddenly a uniform magnetic field is switched on parallel to

X -axis, when particle is at origin. What must be the value of θ so that particle passes through point $\mathrm{P}(\mathrm{L}, 0,-\mathrm{H})$ in the minimum possible time?

(a) $\theta=\tan ^{-1}\left(\frac{\pi H}{2 L}\right)$
(b) $\theta=\tan ^{-1}\left(\frac{\pi H}{4 L}\right)$
(c) $\theta=\tan ^{-1}\left(\frac{\pi H}{3 L}\right)$
(d) $\theta=\tan ^{-1}\left(\frac{2 \pi H}{3 L}\right)$

Q 13. A charged particle of specific charge (charge/mass) α is released from origin at time t $=0$ with velocity $\vec{v}=v_{0}(\hat{\imath}+\hat{\jmath})$ in uniform magnetic field $\vec{B}=-B_{0} \hat{l}$. Co-ordinates of the particle at time $\mathrm{t}=\frac{\pi}{B_{0} \alpha}$ are :
(a) $\left(\frac{v_{0}}{2 B_{0} \alpha}, \frac{\sqrt{2} v_{0}}{\alpha B_{0}}, \frac{-v_{0}}{B_{0} \alpha}\right)$
(b) $\left(\frac{-v_{0}}{2 B_{a} \alpha}, 0,0\right)$
(c) $\left(0, \frac{2 v_{0}}{B_{0} \alpha}, \frac{v_{0} \pi}{2 B_{0} \alpha}\right)$
(d) $\left(\frac{v_{0} \pi}{B_{0} \alpha}, 0, \frac{-2 v_{0}}{B_{\theta} \alpha}\right)$

Q 14. Two very long straight parallel wires carry steady currents i and $2 i$ in opposite directions. The distance between the wires is d . At a certain instant of time a point charge q is at a point equidistant from the two wires in the plane of the wires. Its instantaneous velocity \vec{v} is perpendicular to this plane. The magnitude of the force due to the magnetic field acting on the charge at this instant is:
(a) $\frac{\mu_{0} i q d}{2 \pi d}$
(b) $\frac{\mu_{0} i q v}{\pi d}$
(c) $\frac{3 \mu_{0} i q v}{2 \pi d}$
(d) zero

Answer Key

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI

6 months
No cost EMI
₹28,000

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
\times Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

6 months
No cost EMI

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.
₹4,200/mo

$$
+10 \% \text { OFF ₹ } 25,200
$$

Written Solution

DPP- 3 Moving charge in Magnetic field, Helical path By Physicsaholics Team
Q.1) Two particles A and B of same mass and having charges of same magnitude but of opposite nature are thrown in a region of magnetic field (as shown) with speeds v_{1} and $\mathrm{v}_{2}\left(\mathrm{v}_{1}>\mathrm{v}_{2}\right)$. At the time particle A escapes out of the magnetic field, angular momentum of particle B w.r.t. particle A is proportional to (Assume both the particles escape in the region from where they respectively entered the field)
(a) $v_{1}+v_{2}$
(b) $v_{1}-v_{2}$
(c) $v_{1}^{2} v_{2}^{2}$
(d) $v_{1}^{2}+v_{2}^{2}$

Q.2) Trajectories of three particles A, B and C projected perpendicular to a uniform transverse magnetic field in three different cases are shown in figure. A, B and C can be
from Case $3 \rightarrow$
A \& C have R 4 nad
(a) ${ }_{1}^{1} H,{ }_{2}^{4} \mathrm{He},{ }_{1}^{2} H$ charge means
(b) ${ }_{1}^{1} \mathrm{H},{ }_{1}^{2} \mathrm{H},{ }_{2}^{4} \mathrm{He}$
(c) ${ }_{1}^{2} \mathrm{H},{ }_{2}^{4} \mathrm{He},{ }_{1}^{1} \mathrm{H}$
(d) ${ }_{2}^{4} \mathrm{He},{ }_{1}^{1} \mathrm{H},{ }_{1}^{2} \mathrm{H}$

$$
\frac{\text { form Case } 1}{\left(\frac{m}{q}\right) A\left(\frac{m}{q}\right)_{B}^{4} H}
$$

$\operatorname{Sim} \frac{m}{q}$ is same for $1 H^{2} \& H_{2} e^{4}$,

$$
R_{A}<R_{B}
$$

$$
\begin{array}{ll}
A \text { is } 1 H^{\prime}
\end{array} \quad \Rightarrow\left(\frac{m}{q}\right)_{A}<\left(\frac{m}{q}\right)_{B}
$$

Q.3) A particle of mass m and charge q enters a region of magnetic field (as shown) with speed v . There is a region in which the magnetic field is absent, as shown. The particle after entering the region collides elastically with a rigid wall. Time after which the velocity of particle becomes antiparallel to its initial velocity is
$A B C$ \& CDE are symmetric.
Angle of deflection $O=S_{1-}^{-1}\left(\frac{d}{R}\right)$
(a) $\left.\frac{m}{2 q B}(\pi+4)\right)$
(c) $\frac{m}{4 q B}(\pi+2)$

$$
\theta=\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\pi / a
$$

(b) $\left.\frac{m b}{a b}(\pi)+2\right)$
$t_{A B}=\theta / 4$
$=\frac{\pi m}{4 q B}$
(d) $\frac{m}{4 q B}(2 \pi+3)$

$$
t_{B C}=\frac{B C}{V}=\frac{m}{q B}
$$

$$
\begin{aligned}
\text { total time } & =2\left(t_{A B}+t_{B C}\right) \\
& =2\left(\frac{\pi m}{4 q B}+\frac{m}{q B}\right) \\
& =\frac{m}{2 q B}(\pi+4)
\end{aligned}
$$

Ans. a
Q.4) A uniform magnetic field $\vec{B}=\mathrm{B}_{0} \hat{\jmath}$ exists in space. A particle of mass m and charge q is projected towards negative x -axis with speed v from a point $(\mathrm{d} 0,0)$. The maximum value of v for which the particle does not hit the y-z plane is:
(a) $\frac{2 B q}{d m}$
(b) $\frac{\text { Baa }}{m}$
(c) $\frac{B q}{2 d m}$
(d) $\frac{B q d}{2 m}$

$A+$ max value of V particle with just touch $y z$ plane.

$$
\begin{aligned}
R=d & =\frac{m V}{q B} \\
V & =q B d / m
\end{aligned}
$$

Q.5) Two identical particles having the same mass m and charges $+q$ and -q separated by a distance d enter in uniformmagnetic field B directed perpendicular to paper inwards with speeds v_{1} and v_{2} as shown in figure. The particles will not collide if: (Ignore electrostatic force)

Q.6) A charged particle having charge q experience a force $\vec{F}_{1}=q(-\hat{\jmath}+\hat{k}) \mathrm{N}$ in a magnetic field \vec{B} when it has a velocity $\vec{v}_{1}=1 \hat{\imath} \mathrm{~m} / \mathrm{s}$. The force becomes $\vec{F}_{1}=$ $q(\hat{\imath}-\hat{k}) \mathrm{N}$ when the velocity is changed to $\vec{v}_{2}=1 \hat{\jmath} \mathrm{~m} / \mathrm{s}$. The magnetic induction vector at that point is:

$$
\begin{aligned}
\overline{F_{1}}=q\left(\hat{V_{1}} \times \vec{B}\right) & \Rightarrow q\left((\hat{j}+\hat{k})=q \hat{\imath} \times\left(B_{x} \hat{\imath}+B_{y} \hat{\jmath}+B_{z} \hat{k}\right)\right. \\
& \Rightarrow-\hat{j}+\hat{k}=B_{y} \hat{j}-B_{2} \hat{\jmath} \\
& \Rightarrow B_{2}(\hat{N}), B_{y}=1 \\
& \text { (b) }(\hat{y}-\hat{j})+\hat{k}) T
\end{aligned}
$$

(b) $(\hat{i}-\hat{-}-\hat{k}) T$

$$
\begin{aligned}
& \overrightarrow{F_{2}}=q(\vec{v} \times \vec{B}) \Rightarrow q(\hat{\imath}-\hat{k})=q \hat{\jmath} \times\left(B_{x} \hat{\imath}+B_{y} \hat{\jmath}+B_{z} \hat{k}\right) \\
& \Rightarrow \hat{k}=-B_{x} \hat{k}+B_{z} \hat{\imath} \\
& B_{x}=1
\end{aligned}
$$

Q.7) A charged particle is projected with velocity v_{0} along positive x -axis. The magnetic field B is directed along negative z-axis between $x=0$ and $x=L$. The particle emerges out (at $x=L$) at an angle of 60° with the direction of projection. Find the velocity with which the same particle is projected (at $\mathrm{x}=0$) along positive x -axis so that when it emerges out (at $\mathrm{x}=\mathrm{L}$), the angle made byit is 30° with the direction of projection:

$$
\sin \theta=\frac{d}{R}=\frac{d q B}{\cos v}
$$

(a) $2 \mathrm{v}_{0}$
(b) $\mathrm{V}_{0} / 2$
(c) $\mathrm{c}_{9} \sqrt{3}$
(d) $y / \sqrt{3}$

$$
\begin{aligned}
& V=\frac{G B d}{\operatorname{Lr} \sin 60^{\circ}} \\
& V=\frac{q B d}{m \sin \theta}=\frac{V_{0} \operatorname{Sin} 60}{\operatorname{Sin} 30}=V_{0} \sqrt{3}
\end{aligned}
$$

Q.8) A block of mass m \& charge q is released on a long smooth inclined plane. Magnetic field B is constant, uniform, horizontal and parallel to surface as shown. Find the time from start when block loses contact with the surface -

Q.9) Two particles of charges +Q and -Q are projected from the same point with a velocity v in a region of uniform magnetic field B such that the velocity vector makes an angle θ with the magnetic field. Their masses are M and 2 M , respectively. Then, they will meet again for the first time at a point whose distance from the point of projection is -
\rightarrow Two round of first
first $\leftarrow M \rightarrow V i=T=2 T^{2} 0$ around of second
Second $\longleftarrow 2 m$
(a) $2 \pi \mathrm{Mv} \cos \theta / \mathrm{QB}$
(c) $\pi M \sim \cos \theta / Q B$
$\begin{gathered}\text { Timperiod } \\ \text { of first }\end{gathered}=\frac{2 \pi M}{Q B}$ Timeperiod of Second
of first $Q B$

$$
T^{\prime}=\frac{4 \pi M}{Q B}=2 T
$$

particles will return to x axis after Completing integeral no of
at $t=T^{\prime}=2 T$
both will be on x axizgat position

$$
\begin{aligned}
& x=\sqrt{\cos \theta \cdot T} \\
& 2=\frac{4 \pi N V \cos \theta}{Q B}
\end{aligned}
$$

Ans. d
Q.10) A direct current flowing through the winding of a long cylindrical solenoid of radius R produces in it a uniform magnetic field of induction B. An electron flies into the solenoid along the radius between its turns (at right angles to the solenoid axis) at a velocity \vec{v} (Figure). After a certaintime, the electron deflected by the magnetic field leaves the solenoid. Determine the time t during which the electron moves in the solenoid.
(a) $\frac{m}{e B} \tan ^{-1} \frac{e B R}{m v}$
(c) $\frac{m}{e B} \tan ^{-1} \frac{m v}{e B R}$

Radius of circular path $B_{0}=\frac{m v}{c B}$ $\tan \theta=\frac{R}{R_{0}}=\frac{C B R}{m v}$

$$
\begin{aligned}
& t=\frac{2 \theta}{w} \\
& =\frac{2 m}{q \sqrt{B}} \tan ^{-1}\left(\frac{e B R}{m V}\right)
\end{aligned}
$$

Ans. b
Q.11) In a region of space, a uniform magnetic field B exists in the y-direction. A proton is fired from the origin, with its initial velocity Y making a small angle α with the y-direction in the y-z plane. In the subsequent motion of the proton Circular
projection
othellisel
buth.
(a) its x-coordinate can never be positive

(b) its x-and zooordinates cannot bothbe zero at the same time
(c) its z-coordinate can never be negative
(d) its y-coordinate will beproportional to the square of its time of flight
Q.12) A charged particle is moving with constant speed in a horizontal $x-y$ plane in a straight line as shown. Suddenly a uniform magnetic field is switched on parallel to X -axis, when particle is at origin. What must be the value of θ so that particle passes through point $\mathrm{P}(\mathrm{L}, 0,-\mathrm{H})$ in the minimum possible time ?
(a) $\theta=\tan ^{-1}\left(\frac{\pi H}{2 L}\right)$
(b) $\theta=\tan ^{-1}\left(\frac{\pi H}{4 L}\right)$
(c) $\theta=\tan -\left(\frac{\pi}{3 t}\right)$

(d) $\theta=\tan ^{-1}\left(\frac{2 \pi H}{3 L}\right)$ of particle will be either 0 or -2R.

So $H=2 R=\frac{2 m v}{q B} \operatorname{Sin} \theta$

$$
\begin{aligned}
& H=\frac{m v}{q B} \sin \theta \\
\Rightarrow & \sin \theta=\frac{q B H}{m v}-(1)
\end{aligned}
$$

Since $V_{x}=V \cos \theta=$ Constant $\quad L=V \cos \theta \cdot t$
Let particle reaches to given position at

$$
\begin{aligned}
& t=n \text { (half time period) }=n \pi m / q B \quad \text { Ans. a } \\
& L=V \cos \theta \cdot \frac{n \pi m}{q B} \Rightarrow \cos \theta=\frac{q B L}{n \pi m L} \text { - (1) } \\
& \tan \theta=\frac{n \pi H}{2 L} \text { forming } \theta, n=1 \Rightarrow \theta=\tan ^{-1}\left(\frac{\pi \mu}{2 L}\right)
\end{aligned}
$$

Q.13) A charged particle of specific charge (charge/mass) a is released from origin at time $\mathrm{t}=0$ with velocity $\vec{v}=v_{0}(\hat{\imath}+\hat{\jmath})$ in uniform magnetic field $\vec{B}=-B_{0} \hat{\imath}$. Coordinates of the particle at time $\mathrm{t}=\frac{\pi}{B_{0} \alpha}$ are :

$$
\begin{aligned}
& V_{x}=r_{0}=\text { Constant. } \\
& x=V_{x}+t=\frac{V_{0} \pi}{B 0 \alpha} \\
& B=\frac{\pi}{B_{0} \alpha}=\text { Ilalf time } \\
& \text { (b) }\left(\frac{-v_{0}}{2 B_{a} \alpha}, 0,0\right) \quad \text { period. }
\end{aligned}
$$

(c) $\left(0, \frac{2 v_{0}}{B_{0} \alpha}, \frac{v_{0} \pi}{2 B_{0} \alpha}\right)$
(d) $\left(\frac{v_{0} \pi}{B_{0} \alpha}, 0, \frac{2 v_{0}}{B_{0} \alpha}\right)$

$$
Z=2 R=\frac{2 m v_{0}}{q B_{0}}=\frac{2 v_{0}}{\beta_{0} \alpha}
$$

Q.14) Two very long straight parallel wires carry steadycurrents i and 2 i in opposite directions. The distance between the wires is d. At a certain instant of time a point charge q is at a point equidistant from the two wires in the plane of the wires. Its instantaneous velocity \vec{v} is perpendicular to this plane. The magnitode of the force due to the magnetic field acting on the charge at this instant is.

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/97

Video Solution on YouTube:-
https://youtu.be/AlqRysljOXs

Written Solution on Website:-

Chalo Nikis

